
July 10th, 2015
Iranian researchers from University of Tehran synthesized magnetic nanoparticles that showed appropriate function in treating cancer.
The nanoparticles have been produced through a simple and cost-effective method.
Injection and delivery of magnetic nanoparticles to the cancer tissue is one of the methods to cure and eliminate cancerous cells. Use of alternative magnetic field outside the patient's body increases the temperature of magnetic nanoparticles after the placement of these particles inside the body and their contact with cancerous and a few healthy cells. The heat caused by increasing the temperature eliminates cancerous cells. This method is known as hyperthermia.
In this research, ceramic nanoparticles of lanthanum manganite doped with strontium (La8Sr2MnO3) have been produced through mechanical milling and by using thermal operation.
One of the most important parts of this research is the adjustment of Curie temperature. Curie temperature is the temperature in which magnetic nanoparticles lose their magnetic properties and their temperature does not increase. Therefore, they do not create more heat although magnetic field is imposed. Since cancerous cells are eliminated at lower temperatures in comparison with healthy ones, the temperature should be adjusted in a way that is higher than the temperature for the elimination of cancerous cells while it is lower than the temperature to harm healthy cells.
According to the researchers, Curie temperature of the magnetic nanoparticles synthesized in this research is 46°C. At this temperature, cancerous cells are eliminated while healthy ones are not harmed. This characteristic is a result of changing the size of the synthesized nanoparticles. The change in the size of the synthesized nanoparticles depends on the raw materials and the synthesis method.