Aurorae Discovered on Distant Stars Suggest Hidden Planets

11 Oct 2021

 

Using the world’s most powerful radio telescope, LOFAR, scientists have discovered stars unexpectedly blasting out radio waves, possibly indicating the existence of hidden planets.

 

Searching for red dwarfs

Leiden University’s Dr Joseph Callingham and his colleagues have been searching for aurorae from exoplanets using the Low Frequency Array (LOFAR), the world’s most powerful radio telescope. “We’ve discovered signals from 19 distant red dwarf stars, four of which are best explained by the existence of planets orbiting them,” Dr Callingham said. “We’ve long known that the planets of our own solar system emit powerful radio waves as their magnetic fields interact with the solar wind. This same process drives the beautiful aurorae we see at the poles of Earth.

“However, it is only with LOFAR have we had the sensitivity to find auroral emission outside our Solar System. This is an incredibly powerful tool to help find planets outside our Solar System and to determine their magnetic fields.” LOFAR was designed, built and is presently operated by ASTRON, the Netherlands Institute for Radio Astronomy, its core is situated in Exloo, the Netherlands.

 

A spectacle from lightyears away

Dr Harish Vedantham at ASTRON, the Netherlands Institute for Radio Astronomy, co-author of the paper, said that the team is confident these signals are coming from the magnetic connection of the stars and unseen orbiting planets, similar to the interaction between Jupiter and its moon Io. “Our own Earth has aurorae, commonly recognised here as the northern and southern lights. These beautiful aurorae also emit powerful radio waves – this is from the interaction of the planet’s magnetic field with the solar wind,” he said. “But in the case of aurorae from Jupiter, they’re much stronger as its volcanic moon Io is blasting material out into space, filling Jupiter’s environment with particles that drive unusually powerful aurorae.

“Our model for this radio light from our stars is a scaled-up version of Jupiter and Io, with an exoplanet enveloped in the magnetic field of a star, feeding material into vast currents that similarly power bright aurorae on the star itself.

“It’s a spectacle that has attracted our attention from lightyears away.”

 

Future observations with the Square Kilometre Array

The team are now investigating the direct presence of the planets around the star using optical telescopes and searching for periodicity in the radio light. “The radio light should turn on and off like a lighthouse,” Dr Callingham said “and we hope to see that periodicity in new LOFAR data.”
The discoveries with LOFAR are just the beginning, but the telescope only has the capacity to monitor stars that are relatively nearby, up to 165 lightyears away. With the next-generation Square Kilometre Array radio telescope finally under construction, switching on in 2029, the team predict they will be able to see hundreds of relevant stars out to much greater distances.

This work demonstrates that radio astronomy is on the cusp of revolutionising our understanding of planets outside our Solar System.

 

[Image]

Artist impression of a red-dwarf star’s magnetic interaction with its exoplanet. 

 

source: 
ASTRON